Aufgabe 1: Für die Konstruktion des Körpers $GF(2^5)$ wird das primitive Polynom $p(x)=x^5+x^3+x^2+x+1$ benutzt. Ergänzen Sie die fehlenden 5-Tupel in der nachfolgenden Tabelle.

i	α^i	α^4	α^3	α^2	α^1	α^0
0	1	0	0	0	0	1
1	α	0	0	0	1	0
2	α^2	0	0	1	0	0
3	α^3	0	1	0	0	0
4	α^4	1	0	0	0	0
5	α^5	0	1	1	1	1
6	α^6					
7	α^7					
8	α^8					
9	α^9					
10	α^{10}				-	
11	α^{11}					
12	α^{12}					
13	α^{13}					
14	α^{14}	0	1	1	0	0
15	α^{15}					
16	α^{16}					
17	α^{17}					
18	α^{18}					
19	α^{19}					
20	α^{20}					
21	$egin{array}{c} lpha^{21} \ lpha^{22} \end{array}$					
22	α^{22}					
23	α^{23}					
24	α^{24}					
25	$ \alpha^{25} $					
26	α^{26}					
27	α^{27}					
28	α^{28}					
29	α^{29}					
30	$lpha^{30}$			-		

Aufgabe 2: Addieren Sie mit der Tabelle aus Aufgabe 1 die folgenden Elemente:

$$\alpha^{14} + \alpha^3 =$$

$$\alpha^{14} + \alpha^{18} =$$

$$\alpha^{14} + \alpha^{28} =$$

Aufgabe 3: Multiplizieren Sie in dem Körper von Aufgabe 1 die folgenden Elemente:

$$\alpha^{19} \cdot \alpha^3 =$$

$$\alpha^{13} \cdot \alpha^{18} =$$

$$\alpha^{21} \cdot \alpha^{25} =$$

 $\mathit{Hinweis}\colon \text{Im}$ Ergebnis sollen die Exponenten jeweils aus der Menge $\{0,1,2,\dots 30\}$ sein.

Aufgabe 4: Sie wollen einen binären BCH-Code der Länge n=31 konstruieren, der mindestens 5 Fehler korrigieren kann.

a.) Ergänzen Sie die folgende Zeile:

Für die Mindestdistanz gilt $d \ge$ entworfende Distanz =

b.) Geben Sie die relevanten Kreisteilungsklassen an:

$$C_1 = \{1, 2, 4, 8, 16\}$$
 $C_3 = \{3, 6, 12, 24, 17\}$
 $= \{\}$
 $= \{\}$

c.) Wieviele Informationsbits k hat der Code?

Es gilt k =

d.) Das Generatorpolynom hat die folgende Gestalt:

$$g(x) = m_1(x) \cdot m_3(x) \cdot$$

Ergänzen Sie in voriger Gleichung die fehlenden Minimalpolynome.

e.) Bestimmen Sie die Minimalpolynome von α und α^3 .

$$m_1(x) =$$

$$m_3(x) =$$

Hinweis: Benutzen Sie zur Bestimmung von $m_1(x)$ und $m_3(x)$ die Darstellung des Körpers $GF(2^5)$ aus Aufgabe 1.

Aufgabe 5: Lösen Sie mit der quadratischen Lösungsformel die Gleichung

$$\alpha^{13} \cdot z^2 + z + \alpha^{10} = 0$$

im Körper $GF(2^4)$ mit $p(x) = x^4 + x + 1$ wobei $p(\alpha) = 0$.

$$z_1 =$$

$$z_2 = .$$

Aufgabe 6: Gegeben sei der Körper $GF(2^4)$, konstruiert mit dem primitiven Polynom $p(x) = x^4 + x + 1$, $p(\alpha) = 0$. Das Goppa Polynom $G(z) = z^2 + z + 1 \text{ mit}$

$$L = GF(2^4) - \{\text{Nullstellen von } G(z) \text{ in } GF(2^4)\}$$

bestimmt einen binären Goppa Code.

Ergänzen Sie nachfolgend die Gleichung bzw. Ungleichungen für Länge n, Mindestdistanz d sowie Anzahl der Informationsstellen k des Codes.

$$n = |L| =$$

$$d \geq$$

$$d \geq k \geq 1$$

Aufgabe 7: Die nachfolgend angegebene Prüfmatrix \mathbf{H} beschreibt einen nichtbinären [8, 6, 3] Hamming Code über GF(7) in systematischer Form.

a.) Bestimmen Sie die zugehörige Generatormatrix G.

G =

b.) Decodieren Sie die Vektoren

$$\mathbf{r_1} = (1, 2, 3, 4, 5, 6, 1, 2)$$

$$\mathbf{r_2} = (6, 5, 4, 3, 2, 1, 6, 5)$$

zu den nächsten Codewörtern $\mathbf{c_1}$ und $\mathbf{c_2}$:

$$c_1 =$$

$$c_2 =$$

c.) Codieren Sie die Nachrichtenvektoren

$$\mathbf{m_a} = (1, 2, 3, 4, 5, 6)$$

$$\mathbf{m_a} = (2, 2, 2, 2, 2, 2).$$

$$c_a =$$

$$c_b =$$

Aufgabe 8: Decodieren Sie den Binärvektor

$$\mathbf{r} = (r_0, r_1, \dots, r_{15}) = (1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)$$

zum nächsten Codewort des binären [16, 8, 5] Goppa Codes, der mit dem Goppa Polynom $G(z) = z^2 + z + \alpha^3$ gebildet wird, wobei α Wurzel des primitiven Polynoms $x^4 + x + 1$ ist. Für die α_i gilt $\alpha_0 = 0$, $\alpha_i = \alpha^{i-1}$, $i = 1, 2, \ldots, 15$.

Hinweis: Es handelt sich um den Code, der in der Vorlesung behandelt wurde (siehe z.B. Aufgabe 21, Vorlesung vom 19.01.2007, Folie 15).

a.) Bestimmen Sie zunächst das Syndrom S(z):

$$S(z) =$$

b.) Bestimmen Sie mit dem Syndrom S(z) das Polynom T(z):

$$T(z) =$$

c.) Bestimmen Sie sodann $R(z) = \sqrt{T(z) + z} \mod G(z)$:

$$R(z) =$$

d.) Bestimmen Sie schließlich das Fehlerstellenpolynom $\sigma(z)$:

$$\sigma(z) =$$

e.) Finden Sie mittels der Nullstellen von $\sigma(z)$ den Fehlervektor **e** und das Codewort **c**:

$$e =$$

$$\mathbf{c} =$$

Hinweis: Zur Nullstellensuche siehe auch Aufgabe 5.

 $Aufgabe\ 9:$ Bei perfekten, linearen, binären [n,k,d=2t+1] Codes gilt die Kugelpackungsgleichung

$$2^k \cdot \sum_{j=0}^t \binom{n}{j} = 2^n.$$

Es gilt

$$2^{78} \cdot \left(\binom{90}{0} + \binom{90}{1} + \binom{90}{2} \right) = 2^{90}. \tag{1}$$

Welche der beiden Aussagen ist richtig?

- a.) Aus Gleichung (1) folgt, daß ein perfekter, linearer, binärer [90, 78, 5] Code existiert.
- b.) Aus Gleichung (1) folgt nicht, daß ein perfekter, linearer, binärer [90,78,5] Code existiert.

Aufgabe~10:Gegeben seien die Vektoren ${\bf x}$ und ${\bf y}$ über dem Körper $GF(11)=\{0,1,2,\ldots,10\},$ wobei

$$\mathbf{x} = (1, 1, 2, 3, 1, 9, 10)$$

 $\mathbf{y} = (1, 1, 3, 2, 0, 2, 5).$

- a.) Wie groß ist die Hamming Distanz d_H von ${\bf x}$ und ${\bf y}$?
- b.) Wie groß ist die Lee Distanz d_{Lee} von \mathbf{x} und \mathbf{y} ?

Aufgabe 11: Markieren Sie die folgenden Aussagen zu den t-fehlerkorrigierenden negazyklischen Codes für die Lee Metrik als falsch oder richtig:

- a.) Beim Polynom S(z) sind nur die ersten ungeraden S_j , für $j=1,3,\ldots 2t-1$ bekannt.
- b.) Man benötigt nur das Fehlerstellenpolynom und kein Fehlerwertpolynom.
- c.) Fehlerwerte ungleich 1 oder -1 dürfen bei einer Datenübertragung nicht auftreten.
- d.) Fehlerwerte ungleich 1 oder -1 führen, sofern die Fehler mit dem Code korrigierbar sind, zu mehrfachen Nullstellen von $\sigma(z)$.