Prüfung: Algebraische Codierung für die sichere Datenübertragung

Dr.-Ing. Klaus Huber

19.02.2015 Ruhr-Universität Bochum

Prüfungsteilnehmer/in

Vorname:

Name:

Matrikelnr.:

DPO:

 $Aufgabe\ 1$: Für die Konstruktion des Körpers $GF(2^6)$ wird das primitive Polynom $p(x)=x^6+x^4+x^3+x+1$ benutzt. Ergänzen Sie die fehlenden 6-Tupel in der nachfolgenden Tabelle.

i	α^i	α^5	α^4	α^3	α^2	α^1	α^0	$\parallel i$	α^i	α^5	α^4	α^3	α^2	α^1	α^0
0	1	0	0	0	0	0	1	32	α^{32}	1	1	0	0	1	0
1	α	0	0	0	0	1	0	33	α^{33}	1	1	1	1	1	1
2	α^2	0	0	0	1	0	0	34	α^{34}	1	0	0	1	0	1
3	α^3	0	0	1	0	0	0	35	α^{35}	0	1	0	0	0	1
4	α^4	0	1	0	0	0	0	36	α^{36}	1	0	0	0	1	0
5	α^5	1	0	0	0	0	0	37	α^{37}	0	1	1	1	1	1
6	α^6	0	1	1	0	1	1	38	α^{38}	1	1	1	1	1	0
7	α^7							39	α^{39}						
8	α^8							40	α^{40}						
9	α^9							41	α^{41}						
10	α^{10}							42	α^{42}						
11	α^{11}							43	α^{43}						
12	α^{12}							44	α^{44}						
13	α^{13}							45	α^{45}						
14	α^{14}							46	α^{46}						
15	α^{15}	1	0	0	1	0	0	47	α^{47}	1	1	1	0	1	0
16	α^{16}							48	α^{48}						
17	α^{17}							49	α^{49}						
18	α^{18}							50	α^{50}						
19	α^{19}							51	α^{51}						
20	α^{20}							52	α^{52}						
21	α^{21}							53	α^{53}						
22	α^{22}							54	α^{54}						
23	α^{23}							55	α^{55}						
24	α^{24}	1	0	1	0	1	1	56	α^{56}	0	0	0	0	1	1
25	α^{25}							57	α^{57}						
26	α^{26}							58	α^{58}						
27	α^{27}							59	α^{59}						
28	α^{28}							60	α^{60}						
29	α^{29}	1	1	1	1	0	1	61	α^{61}	1	1	1	0	1	1
30	α^{30}	1	0	0	0	0	1	62	α^{62}	1	0	1	1	0	1
31	α^{31}	0	1	1	0	0	1	63	α^{63}	0	0	0	0	0	1

 $Aufgabe\ 2:$ Addieren Sie mit der Tabelle aus Aufgabe 1 die folgenden Elemente:

$$\alpha^{29} + \alpha^{61} =$$

$$\alpha^{47} + \alpha^{50} =$$

$$\alpha^{15} + \alpha^{24} =$$

Aufgabe 3: Multiplizieren Sie in dem Körper von Aufgabe 1 die folgenden Elemente:

$$\alpha^{29} \cdot \alpha^{32} =$$

$$\alpha^{12} \cdot \alpha^{59} =$$

$$\alpha^{17} \cdot \alpha^{-49} =$$

 $\mathit{Hinweis}\colon \mathrm{Im}$ Ergebnis sollen die Exponenten jeweils aus der Menge $\{0,1,2,\dots 62\}$ sein.

Aufgabe 4: Sie wollen einen binären BCH-Code der Länge n=2047 konstruieren, der mindestens 5 Fehler korrigieren kann.

a.) Ergänzen Sie die folgende Zeile:

Für die Mindestdistanz gilt $d \ge$ entworfende Distanz =

b.) Geben Sie die relevanten noch fehlenden Kreisteilungsklassen an:

$$C_1 = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024\}$$
 $C_3 = \{3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 1025\}$
 $= \{$
 $= \{$
 $= \{$

c.) Wieviele Informationsbits k hat der Code?

Es gilt k =.

d.) Das Generatorpolynom hat die folgende Gestalt:

$$g(x) = m_1 \cdot m_3 \cdot$$

Ergänzen Sie in voriger Gleichung die fehlenden Minimalpolynome.

Aufgabe 5: Bestimmen Sie mit Hilfe der Tabelle aus Aufgabe 1 das Generatorpolynom eines Reed-Solomon Codes über $GF(2^6)$, der drei Fehler erkennen kann.

$$g(x) =$$

Aufgabe6: Gegeben sei der Körper $GF(2^6)$ gemäß Aufgabe 1. Das Goppa Polynom $G(z)=(z^2+z+\alpha^{32})\cdot(z^2+z+\alpha^{33})$ mit

$$L = GF(2^6) - \{\text{Nullstellen von } G(z) \text{ in } GF(2^6)\}$$

bestimmt einen binären Goppa Code.

Ergänzen Sie nachfolgend die Gleichung bzw. Ungleichungen für Länge n, Mindestdistanz d sowie Anzahl der Informationsstellen k des Codes.

$$n = |L| = d \ge k \ge .$$

Hinweis: Erläutern Sie wie Sie auf die Länge n kommen.

Aufgabe 7: Bestimmen Sie für binäre Codes der Länge n=16 die durch die Gilbert-Varshamov Schranke gegebenen Werte der Mindestdistanz d und tragen Sie diese in die Tabelle ein.

$\mid k \mid$	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
d															

 $\it Hinweis:$ Die Gilbert-Varshamov Schranke garantiert die Existenz eines [n,k,d]-Codes. Für Binärcodes lautet sie

$$\sum_{j=0}^{d-2} \binom{n-1}{j} < 2^{n-k}$$

(siehe Vorlesung vom 28.11.2014, Folie 2).

Aufgabe 8: Decodieren Sie den Binärvektor

$$\mathbf{r} = (r_0, r_1, \dots, r_{15}) = (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)$$

zum nächsten Codewort des binären [16, 8, 5] Goppa Codes, der mit dem Goppa Polynom $G(z) = z^2 + z + \alpha^3$ gebildet wird, wobei α Wurzel des primitiven Polynoms $x^4 + x + 1$ ist. Für die α_i gilt $\alpha_0 = 0$, $\alpha_i = \alpha^{i-1}$, $i = 1, 2, \ldots, 15$.

Hinweis: Es handelt sich um den Code, der in der Vorlesung behandelt wurde.

a.) Bestimmen Sie zunächst das Syndrom S(z):

$$S(z) =$$

b.) Bestimmen Sie mit dem Syndrom S(z) das Polynom T(z):

$$T(z) =$$

c.) Bestimmen Sie das Fehlerstellenpolynom $\sigma(z)$:

$$\sigma(z) =$$

d.) Finden Sie den Fehlervektor ${f e}$ und das Codewort ${f c}$:

e =

 $\mathbf{c} =$

Aufgabe 9: Decodieren Sie das Polynom

$$r(x) = 5x^3 + 4x^2 + 6$$

zum nächsten Codewort des [5,3,5] negazyklischen Codes über GF(11), der mit dem Generatorpolynom $g(x)=(x-2)\cdot(x-2^3)$ erzeugt wird.

a.) Bestimmen Sie den bekannten Teil des Syndroms $\tilde{S}(z)$:

$$\tilde{S}(z) =$$

b.) Bestimmen Sie das Fehlerstellenpolynom $\sigma(z)$:

$$\sigma(z) =$$

c.) Bestimmen Sie Fehlerpolynom e(x) und Codewortpolynom c(x):

$$e(x) =$$

$$c(x) =$$

Lösung Aufgabe 1:

i	α^i	α^5	α^4	α^3	α^2	α^1	α^0	$\parallel i$	α^i	α^5	α^4	α^3	α^2	α^1	α^0
0	1	0	0	0	0	0	1	32	α^{32}	1	1	0	0	1	0
1	α	0	0	0	0	1	0	33	α^{33}	1	1	1	1	1	1
2	α^2	0	0	0	1	0	0	34	α^{34}	1	0	0	1	0	1
3	α^3	0	0	1	0	0	0	35	α^{35}	0	1	0	0	0	1
4	α^4	0	1	0	0	0	0	36	α^{36}	1	0	0	0	1	0
5	α^5	1	0	0	0	0	0	37	α^{37}	0	1	1	1	1	1
6	α^6	0	1	1	0	1	1	38	α^{38}	1	1	1	1	1	0
7	α^7	1	1	0	1	1	0	39	α^{39}	1	0	0	1	1	1
8	α^8	1	1	0	1	1	1	40	α^{40}	0	1	0	1	0	1
9	α^9	1	1	0	1	0	1	41	α^{41}	1	0	1	0	1	0
10	α^{10}	1	1	0	0	0	1	42	α^{42}	0	0	1	1	1	1
11	α^{11}	1	1	1	0	0	1	43	α^{43}	0	1	1	1	1	0
12	α^{12}	1	0	1	0	0	1	44	α^{44}	1	1	1	1	0	0
13	α^{13}	0	0	1	0	0	1	45	α^{45}	1	0	0	0	1	1
14	α^{14}	0	1	0	0	1	0	46	α^{46}	0	1	1	1	0	1
15	α^{15}	1	0	0	1	0	0	47	α^{47}	1	1	1	0	1	0
16	α^{16}	0	1	0	0	1	1	48	α^{48}	1	0	1	1	1	1
17	α^{17}	1	0	0	1	1	0	49	α^{49}	0	0	0	1	0	1
18	α^{18}	0	1	0	1	1	1	50	α^{50}	0	0	1	0	1	0
19	α^{19}	1	0	1	1	1	0	51	α^{51}	0	1	0	1	0	0
20	α^{20}	0	0	0	1	1	1	52	α^{52}	1	0	1	0	0	0
21	α^{21}	0	0	1	1	1	0	53	α^{53}	0	0	1	0	1	1
22	α^{22}	0	1	1	1	0	0	54	α^{54}	0	1	0	1	1	0
23	α^{23}	1	1	1	0	0	0	55	α^{55}	1	0	1	1	0	0
24	α^{24}	1	0	1	0	1	1	56	α^{56}	0	0	0	0	1	1
25	α^{25}	0	0	1	1	0	1	57	α^{57}	0	0	0	1	1	0
26	α^{26}	0	1	1	0	1	0	58	α^{58}	0	0	1	1	0	0
27	α^{27}	1	1	0	1	0	0	59	α^{59}	0	1	1	0	0	0
28	α^{28}	1	1	0	0	1	1	60	α^{60}	1	1	0	0	0	0
29	α^{29}	1	1	1	1	0	1	61	α^{61}	1	1	1	0	1	1
30	α^{30}	1	0	0	0	0	1	62	α^{62}	1	0	1	1	0	1
31	α^{31}	0	1	1	0	0	1	63	α^{63}	0	0	0	0	0	1

Lösung Aufgabe 2:

$$\alpha^{29} + \alpha^{61} = \alpha^{57}$$

$$\alpha^{47} + \alpha^{50} = \alpha^{60}$$

$$\alpha^{15} + \alpha^{24} = \alpha^{42}$$

Lösung Aufgabe 3:

$$\alpha^{29} \cdot \alpha^{32} = \alpha^{61}$$

$$\alpha^{12} \cdot \alpha^{59} = \alpha^8$$

$$\alpha^{17} \cdot \alpha^{-49} = \alpha^{31}$$

Lösung Aufgabe 4:

- a.) Für die Mindestdistanz gilt $d \ge$ entworfende Distanz = 11.
- *b.*)

$$C_1 = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024\}$$

$$C_3 = \{3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 1025\}$$

$$C_5 = \{5, 10, 20, 40, 80, 160, 320, 640, 1280, 513, 1026\}$$

$$C_7 = \{7, 14, 28, 56, 112, 224, 448, 896, 1792, 1537, 1027\}$$

$$C_9 = \{9, 18, 36, 72, 144, 288, 576, 1152, 257, 514, 1028\}$$

- c.) Es gilt $k = 2047 5 \cdot 11 = 1992$.
- $d.) g(x) = m_1 \cdot m_3 \cdot m_5 \cdot m_7 \cdot m_9.$

Lösung Aufgabe 5:

Um drei Fehler erkennen zu können, muss die Mindestdistanz d gleich 4 sein.

$$g(x) = (x - \alpha) \cdot (x - \alpha^{2}) \cdot (x - \alpha^{3})$$

$$= x^{3} + (\alpha^{3} + \alpha^{2} + \alpha) \cdot x^{2} + (\alpha^{2+3} + \alpha^{1+3} + \alpha^{1+2}) \cdot x + \alpha^{1+2+3}$$

$$= x^{3} + \alpha^{21} \cdot x^{2} + \alpha^{23} \cdot x + \alpha^{6}.$$

Lösung Aufgabe 6:

Es gilt

$$\begin{split} \mathrm{tr}(\alpha^{32}) &= \alpha^{32} + \alpha^1 + \alpha^2 + \alpha^4 + \alpha^8 + \alpha^{16} = 0 \\ \mathrm{und} & \mathrm{tr}(\alpha^{33}) &= \alpha^{33} + \alpha^3 + \alpha^6 + \alpha^{12} + \alpha^{24} + \alpha^{48} = 1 \; , \end{split}$$

d.h. das Goppa Polynom hat vier Nullstellen im Körper $GF(2^6)$.

$$\Rightarrow n = |L| = 62$$

$$d \ge 9$$

$$k \ge 62 - 4 \cdot 6 = 38.$$

Lösung Aufgabe 7:

Somit erhält man die Tabelle:

k	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
d	2	2	2	2	3	3	4	4	4	5	6	6	7	8	16

Da $\sum_{j=0}^{14} {15 \choose j} = 2^{15} - 1 < 2^{16-k}$, folgt d = 16 bei k = 1.

Lösung Aufgabe 8:

a.)

$$S(z) = \frac{1}{z - \alpha_1} + \frac{1}{z - \alpha_8} + \frac{1}{z - \alpha_{13}}$$

$$= \alpha^{12}z + \alpha^6z + 1 + \alpha^2z + \alpha^{13}$$

$$= (\alpha^{12} + \alpha^6 + \alpha^2)z + 1 + \alpha^{13}$$

$$\Rightarrow S(z) = \alpha^{10} \cdot z + \alpha^6.$$

b.)

$$(z^2 + z + \alpha^3) : (\alpha^{10}z + \alpha^6) = \alpha^5 z + \alpha^2 \text{ Rest } \alpha^{13}.$$

d.h.

$$\alpha^{13} = 1 \cdot G(z) + (\alpha^5 z + \alpha^2) \cdot S(z)$$

$$\Rightarrow 1 \equiv (\alpha^7 z + \alpha^4) \cdot S(z) \mod G(z).$$

$$\Rightarrow T(z) = \alpha^7 z + \alpha^4$$
.

c.)

$$T(z) + z = \alpha^9 z + \alpha^4 \Rightarrow R(z) = \sqrt{\alpha^4 + z\alpha^9} \mod G(z).$$

$$R(z) = \alpha^2 + w(z) \cdot \alpha^{12}$$

$$= \alpha^2 + (z + \alpha^9) \cdot \alpha^{12}$$

$$\Rightarrow R(z) = \alpha^{12} \cdot z + \alpha^3.$$

$$a(z) = \alpha^{12} \cdot z + \alpha^3$$

$$b(z) = 1$$

$$\sigma(z) = a(z)^2 + z \cdot b(z)^2$$

$$\Rightarrow \sigma(z) = \alpha^9 z^2 + z + \alpha^6.$$

d.) Die Nullstellen von $\sigma(z)$ sind $\alpha_2 = \alpha$ und $\alpha_{12} = \alpha^{11}$.

$$\Rightarrow \mathbf{e} = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)$$

$$\Rightarrow \mathbf{c} = (0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0)$$

Lösung Aufgabe 9: a.)

$$S_1 = r(\alpha) = 5 \cdot 2^3 + 4 \cdot 2^2 + 6 \equiv 7 \mod 11$$

 $S_3 = r(\alpha^3) = 5 \cdot 8^3 + 4 \cdot 8^2 + 6 \equiv 6 \mod 11$
 $\Rightarrow \tilde{S}(z) = 7z + 6z^3$.

b.) Die Berechnung von $\sigma(z)$ erfolgt in gleicher Weise wie bei Aufgabe 24 mit Berlekamps oder Roths Algorithmus (identische Rechnung mit Berlekamps Algorithmus: siehe Folie 4 vom 23.01.2015). Roths Algorithmus liefert zunächst das Polynom $V(z) = 1 + 8z + 10z^2 + 8z^3 + 3z^4$. Durchführen des Euklidschen Algorithmus liefert:

$$z^{5} = (4z+4) \cdot (3z^{4}+8z^{3}+10z^{2}+8z+1) + 5z^{3} + 5z^{2} + 8z + 7$$
$$3z^{4}+8z^{3}+10z^{2}+8z+1 = (5z+1) \cdot (5z^{3}+5z^{2}+8z+7) + 9z^{2} + 9z + 5$$

$$\Rightarrow \sigma(z) = \text{const} \cdot (9z^2 + 9z + 5)$$
.

c.) Das Polynom $\sigma(z)$ hat die doppelte Nullstelle 5. Rechnung identisch mit Aufgabe 24 führt auf das Fehlerpolynom und schließlich auf das Codewortpolynom.

$$e(x) = -2x$$

$$c(x) = 5x^3 + 4x^2 + 2x + 6.$$