Below tables of binary primitive polynomials are given which lead to polynomials w(x) of low weight and/or lowest degree. For the polynomial w(x) the equation w(x)2 = x mod p(x) holds. Clicking on the entries in the column Number of Polynomials leads - if there are more than one - to a window which contains all such primitive polynomials for degrees up to 32 together with the polynomials w(x).
m | p(x) | w(x) | Number of Polynomials |
2 | x2+x+1 | x+1 | 1 |
3 | x3+x+1 | x2+x | 1 |
4 | x4+x+1 | x2+1 | 1 |
5 | x5+x3+1 | x3+x2 | 2 |
6 | x6+x+1 | x3+1 | 2 |
7 | x7+x+1 | x4+x | 3 |
8 | x8+x7+x5+x3+1 | x7+x | 2 |
9 | x9+x5+1 | x5+x3 | 5 |
10 | x10+x8+x7+x4+x2+x+1 | x7+x5 | 3 |
11 | x11+x9+1 | x6+x5 | 2 |
12 | x12+x8+x7+x5+x4+x+1 | x10+x7 | 2 |
13 | x13+x10+x8+x7+x4+x3+x2+x+1 | x9+1 | 5 |
14 | x14+x11+x9+x8+x7+x4+x2+x+1 | x9+x8 | 1 |
15 | x15+x+1 | x8+x | 6 |
16 | x16+x14+x13+x10+x9+x8+x7+x5+x4+x3+x2+x+1 | x14+x13 | 2 |
17 | x17+x3+1 | x9+x2 | 8 |
18 | x18+x16+x14+x11+x10+x9+x8+x7+x4+x3+1 | x16+x6 | 1 |
19 | x19+x18+x15+x11+x10+x9+x8+x6+x4+x3+1 | x12+x11 | 5 |
20 | x20+x15+x14+x13+x12+x9+x7+x6+x4+x3+x2+x+1 | x18+x15 | 2 |
21 | x21+x19+1 | x11+x10 | 9 |
22 | x22+x+1 | x11+1 | 6 |
23 | x23+x5+1 | x12+x3 | 7 |
24 | x24+x20+x19+x16+x15+x14+x13+x12+x10+x6+x3+x+1 | x21+x4 | 1 |
25 | x25+x3+1 | x13+x2 | 7 |
26 | x26+x24+x23+x22+x19+x17...x14+x11+x9+x8+x7+x4+x2+x+1 | x19+x9 | 8 |
27 | x27+x25+x24+x22+x21+x19+x18+x16+x15+x13+x12+...+x6+x5+x3+x2+1 | x15+x | 9 |
28 | x28+x26+x25+x21+x17+x16+x12+x11+x9+x6+x5+x+1 | x21+x9 | 3 |
29 | x29+x27+1 | x15+x14 | 8 |
30 | x30+x27+x25+x17+x15+x11+x10+x9+x5+x4+x3+x+1 | x21+x15 | 3 |
31 | x31+x3+1 | x16+x2 | 13 |
32 | x32+x30...x27+x24+x23+x21+x18+x17+x14+x12+x10+x7+x6+x4...x2+1 | x21+x | 2 |
m | p(x) | w(x) | Number of Polynomials |
2 | - | - | 0 |
3 | x3+x2+1 | x2+x+1 | 1 |
4 | x4+x3+1 | x3+x2+x | 1 |
5 | x5+x4+x3+x2+1 | x3+x+1 | 1 |
6 | x6+x5+1 | x4+x3+x | 3 |
7 | x7+x6+1 | x4+x3+1 | 6 |
8 | x8+x7+x2+x+1 | x5+x4+x2 | 5 |
9 | x9+x7+x6+x4+x3+x+1 | x6+x5+1 | 3 |
10 | x10+x9+x6+x5+x4+x3+x+x2+x+1 | x6+x5++x4 | 6 |
11 | x11+x9+x8+x7+x3+x+1 | x8+x6+x5 | 13 |
12 | x12+x11+x10+x6+x3+x2+1 | x9+x7+x2 | 2 |
13 | x13...x2+1 | x7+x+1 | 22 |
14 | x14...x5+x2+x+1 | x8+x3+x2 | 16 |
15 | x15+x14+1 | x8+x7+1 | 22 |
16 | x16+x15+x14+x13+x12+x11+1 | x9+x6+x | 22 |
17 | x17+x16+x15+x14+1 | x9+x7+1 | 28 |
18 | x18...x5+x2+x+1 | x10+x7+x4 | 24 |
19 | x19...x14+1 | x10+x7+1 | 39 |
20 | x20+x19+x18+x17+x14...x+1 | x11+x9+x8 | 25 |
21 | x21...x16+x3+1 | x11+x8+1 | 44 |
22 | x22+x21+1 | x12+x11+x | 42 |
23 | x23...x18+1 | x12+x9+1 | 56 |
24 | x24...x17+x10...1 | x13+x9+x6 | 21 |
25 | x25...x22+1 | x13+x11+1 | 65 |
26 | x26...x11+x2+x+1 | x14+x6+x2 | 54 |
27 | (x3+x)(x27+1)/(x3+1)+x | x15+x14+x2 | 66 |
28 | x28+x27+x6...1 | x15+x14+x4 | 50 |
29 | x29+x27+x26+x23...x21+x17+x15+x14+x10+x8+x7+x3+x+1 | x17+x14+x12 | 117 |
30 | x30+x29+x18...1 | x16+x15+x10 | 54 |
31 | x31...x28+1 | x16+x14+1 | 129 |
32 | x32...x19+x10...1 | x17+x10+x6 | 53 |
m | p(x) | w(x) |
2 | x2 + x + 1 | x + 1 |
3 | x3 + x + 1 | x2 + x |
4 | x4 + x + 1 | x2 + 1 |
5 | x5 + x3 + 1 | x3 + x2 |
6 | x6 + x + 1 | x3 + 1 |
7 | x7 + x + 1 | x4 + x |
8 | - | - |
9 | x9 + x5 + 1 | x 5 + x3 |
10 | x10 + x8 + x6+x+1 | x5 + x4 + x3 + 1 |
11 | x11 + x9 + 1 | x6 + x5 |
12 | x12 + x6 + x4 + x + 1 | x6 + x3 + x2 + 1 |
13 | x13+x12...x2 + 1 | x 7 + x + 1 |
14 | x 14 + x6 + x4 + x + 1 | x7 + x3 + x2 + 1 |
15 | x15 + x + 1 | x8 + x |
16 | x16 + x6 + x4 + x + 1 | x8 + x3 + x2 + 1 |
17 | x17 + x 3 + 1 | x9 + x2 |
18 | x18 + x8 + x2 + x + 1 | x9 + x4 + x + 1 |
19 | x19...x14 + 1 | x10 + x7 + 1 |
20 | x20 + x6 + x4 + x + 1 | x10 + x3 + x2 + 1 |
21 | x21 + x19 + 1 | x11 + x10 |
22 | x22 + x + 1 | x11 + 1 |
23 | x23 + x5 + 1 | x12 + x3 |
24 | x24 + x10 + x6 + x + 1 | x12 + x5 + x3 + 1 |
25 | x25 + x3 + 1 | x13 + x2 |
26 | x26 + x6 + x2 + x + 1 | x13 + x3 + x + 1 |
27 | x27 + x9 + x5 + x3 + 1 | x14 + x5 + x3 + x2 |
28 | x28 + x6 + x4 + x + 1 | x14 + x3 + x2 + 1 |
29 | x29 + x27 + 1 | x15 + x14 |
30 | x30 + x6 + x4 + x + 1 | x15 + x3 + x2 + 1 |
31 | x31 + x3 + 1 | x16 + x2 |
32 | x 32 + x14 + x6 + x + 1 | x16 + x7 + x3 + 1 |