Determination of Parameters of Bainter's Circuit

The circuit realises a second order transfer function having a complex conjugate pole pair and a conjugate complex zero pair on the imaginary axis (see J.R.Bainter, Active Filter has stable notch, and response can be regulated, Electronics, October 2, 1975 or M.E.Van Valkenburg, Analog Filter Design, Holt, Rinehard and Winston, 1982, pp.346-349).

This circuit permits to realise Cauer filters and inverse Tschebyscheff filters. Input parameters are the conjugate complex pole pair and the conjugate complex zeros on the imaginary axis.

conjugate complex imaginary zero:           z1/2 = ± j
conjugate complexe pole: p1/2 = ± j
                                                    

The values of the resistors of the Bainter Circuit are given by:



The normalised capacitors all have unity capacity C1=C2=1.


Denormalisation

End of Passband: Hz
            Capacity: nF ( 1 nano Farad = 10-9 Farad)