A Knapsack-type Public Key Cryptosystem based on Gaussian
Integers

Klaus Huber, FZ 123a

Deutsche Telekom AG

Forschungs- und Technologiezentrum

P.O.Box 10 00 03

64276 Darmstadt
Germany

Abstract

In this contribution a new knapsack-type public key cryptosystem is proposed.

Indez Terms — Public Key Cryptosystem, Knapsack-cryptosystems, Sum of two Squares,
Gaussian integers, RLL-codes.

1 Introduction

Although knapsack-type public key cryptosystems are considered with suspicion in the crypto
- community, there is no reason to stop consideration of such systems since the underlying
subset sum problem belongs to a class of difficult problems. Their main advantages, speed and
ease of implementation still make knapsack cryptosystems attractive for implementation. In
spite of some dramatic successes in the cryptanalysis of knapsack-type schemes (see [2]}, there
are examples of knapsacks which are still considered infeasible to break, e.g. the Chor-Rivest
knapsack [4]. In this correspondence we propose another public key cryptosystem based on the
knapsack problem. The method uses the representation of a large number n as sum of two
squares to transform an easy (insecure) knapsack into a *hopefully’ secure knapsack.

2 The Basic Scheme

Let n be a large integer which can be represented as sum of two squares. For example we may
select n to-be the product of two large primes p and ¢, i.e. n = p-gq with p = 1 mod 4 and
¢ = 1 mod 4. Such n can easily be represented as sum of two squares if the factors p and ¢ are
known (see e.g. [7] and the appendix). Hence we have

n=a’+¥=x.7", (1)

where 7 = a + 4b, and 7 is the conjugate complex number of . We assume @ > b > 0. The
designer now selects values z; for an easy knapsack. An easy knapsack is a knapsack which can
be 'unpacked’ easily. A well-known example of an easy knapsack is the superincreasing knapsack
(see [6]), represented by the vector x = (z¢,21,..-,21-1). The superincreasing condition
T > E;:é z; ensures easy decryption. For reasons given later on we do not recommend

125

using a superincreasing knapsack, but we will use a superincreasing knapsack for illustration
in example 1. We further impose

Ig:l::g<a~b—1 (2)
=0 z

for reasons of decryption which are explained in the appendix. Let y;, j = 0,1,...,L—1 be
positive random integers which also fulfil

Sycemiat @)
=0 2
By the Euclidean algorithm for Gaussian integers we can compute v and v such that
l=u-7+v-7". : (4)

Let ¢; be the knapsack weights from the interval [0, n — 1} where ¢; mod 7 = z; + iy;. Then

(zj+iy;) on”+ (g~ dy;)-ur=¢;modn, j=0,1,...,I -1 (3)
A person who wants to send a message

m = (mg,my,...,mr1), m;é€ {0,1}

to the owner of the secret key = and x, transmits the value ¢ obtained from

L-1
c=) ¢imy.
) =0

The legitimate receiver can compute

L-1 L-1
cmogin:Z:I-m1+i-Zy1-m;. (6)
=0 =0

Hence, as real part the easy knapsack is obtained, from which the message m can easily be
recovered.

Let us consider a very small example:

Example 1: Let n = 1373249 = 11682 + 952, and L = 7. The easy knapsack be given as the
superincreasing vector

x =(2,5,9,19,41,81,199) ,
and the y vector as
y = (46,89,111,13,29,129,77).
Using equation (5), we get the knapsack weights
{co,€1,...,c6) = (317452,1270973,1183975,447972, 259879, 114137, 1068941) .
To encrypt the message m = (1,0,0,1,0,0,1) we compute

6
c= Z c;-m; = 317452 + 447972 + 1068941 = 1834365 .
3=0
The legitimate receiver computes
Re{cmod 7} = Re{220 + i- 136} = 220,
and solves the easy knapsack

220=1-199+1-1941-2 = m=(1,0,0,1,0,0,1).

126

3 An Easy Knapsack with high density

A crucial parameter for the security of knapsack systems is the density of the knapsack which
is defined as the ratio of the number of weights of the knapsack and the number of bits of the
maximal weight. From [3] we know that we should have a density greater than 0.941 to get a
secure knapsack. Hence using a superincreasing knapsack for the z; is not advisable since then
we would get a density smaller than 0.5 in the basic scheme of the previous section. In this
section we therefore propose another easy knapsack which is able to produce the desired density
in the basic scheme. The easy knapsack proposed also has the desired property that the sum of
two knapsack sums is not necessarily another knapsack sum.

The principal idea is to transform the message vector m = {mg, my, . ..,mz1) of length L into
another vector M = (Mo, Mi,..., Mi—y) of length [> L using a data translation code, i.e. to
increase the number of weights and thus the density. A suitable class of such data translation
codes are the (r,s) runlength-limited (RLL) codes where r zeros must follow every one and at
most s zeros can follow a one (for RLL codes see e.g. [1], chapter 8). If we use RLL-codes the
integer I is close to 7(r,s}- L where 7(r,s) is the reciprocal of the rate of the (r,s) RLL code.
The greatest possible rate of an (r,s)-RLL code, the capacity A(r,s), can be obtained as base
two logarithm of the largest real Toot of the polyromial (z°*? ~ zotl — g2 4 1) /(2 - 1)
Using the capacity we obtain a lower bound for r(r, 8), namely 7(r,s) > 1/A(r,s). Preferably
we use a prefix (free) data translation code (see e.g. [1}). If we select the ! weights of an easy
knapsack according to

2> Y Tk and zig > 2 @

k21

then the runlength-constraints ensure easy decodability of the sum Y M;z; using the intervals
I; defined by

I = [T,‘,S;] where T; = Zz,»_k(,_,_l), and S = ZI;_;‘(,+1) .
k>0 £>0
For the sketch of a computerprogram to unpack such knapsacks see the appendix. The knapsack
of eqn. (7) can also be considered as (r+1) interleaved superincreasing knapsacks. The principles
of this easy knapsack are best explained with a simple example which uses a populer {2,7) RLL
code, the (2,7) Franaszek code of rate 1/2, given in Table 1. The codewords in Table 1 are
prefix-free when read from right to left.

Table 1: (2,7) Franaszek code

Information | Codewords
11 0010
10 0001
000 001000
010 000100
011 001001 .
0010 00010000
0011 00100100

Example 2: Let L = 7,1 = 15, and use the (2,7) Franaszek code as RLL code. The easy
knapsack be given by:

X = (0, Z15- -+ Zi-1)

127

= (7,11,13,17,19, 23,25,33, 37,51, 65, 77,105,133,153) ,
from which we get the Si’s as
(7,11,13,24, 30,36,49,63,73, 100,128, 150,205,261, 303) ,
and the Ti’s as
(7,11,13,17,19,23, 25,33, 44, 62,78,94,124,156,178) .

To encode the message m = (1011110) we use Table 1. Remaining symbols at the end of the
message are padded according to the padding rules 0 — 000,1 — 11, 00 — 000, and 01 — 010.
We encode m from left to right: 10 — 0001, twice 11 — 0010, and 0 — 000 — 001000 to get
the vector M’ = (000100100010001000).

;From Table 1 and the padding rules we see that the highest pos§ible non-zero coefficient of
M’ is [- 1. Hence we can delete the last three zeros of M to get the vector M of length
1 = 15. In our case, we get M = (000100100010001). In any case we never need a coefficient
higher than z;_; = Z14. The sum S Mjz; gives

z3+z5+rlg+zu=17+25+65+153=260.

To speedup the decryption, we may also transmit the length I’ of the vector M’ whichis ’ = 18
in the above example. To decode 260 we proceed according to Table 2. The selection criterion
about 2 possible sequence consists of the equation T < § < Sk, where k is the highest position
having an z-entry in the corresponding row and £ gives the current sum. At the outset only
13 of z14 are possible since T3 = 156 < 260 < 261 = S13 and Ty4 = 178 < 260 < 303 = Sy14-
As € = 127 violates Ts S £ € §g weget 214 =1 and because of the constraint r = 2 we have
£13 = 212 = 0. The value 107 lies in the intervals o = {78,128] and [y, = [94,150]. Thus in
the next step only z;0 or T3y can be 1. The selection criterion is only fulfilled with z19 = 1.
As 42 lies in the intervals [s and I+, only zg or z7 may be 1 in the next step. The codewords
leading to z = 1 or z7 = 1 are listed in step 3. In this way we finally obtain the vector M’
from which m can be recovered.

The density of this knapsack equals (15 — 2)/log,(153) = 1.79. The number 2 appears in
the numerator since in the knapsack the coefficients zo and z will never appear because all
codewords in Table 1 begin with two zeros.

Table 2: Sample unpacking of easy knapsack

Estep01234567891011121314151617 kiTe £ Sk |possible}
1 lxxxxxxxxxxx x 00 1 00 0111941107 = 260 — 714150 yes
XXXXXXXxxx 0001000 0;9[62127=260-z,3100 no
S lxxxXxxXxxxx001 000100 0{7{33442=107~1210/63| yes
XXXXXXXxx000 100100 0{7i33]30=107T—2,1|63| no
xxxxxx00100 100100 0[523]107~2y;~23|36 no
3 xxxx0010001000 100 0(317] 17=42—-1z6 |24 vyes
xxxx000100 1000100 0{3{17] 9=42~2r 24| no
xx0061001001000100 01121 2~27—-24 |11} moO
1 0001001000 10001000106l 0=17T—23 |0] ves

A decoding problem which can arise is that the easy knapsack as decribed above may have
several solutions. This ambiguity may be resolved easily in two different ways {or combinations
thereof }:

128

e The constraints on the weights z; and the RLL-code chosen can be sharpened to make the
corresponding sums unique.

o A hashvalue f(m) may be concatenated to the message m before translating it using the
RLL-code. Then the receiver can easily identify the correct solution.

In practice it seems best to use a combination of the above ideas, e.g. the designer can select
the z; such that the intersection of suceeding intervals Iy and Ii4; is small or empty. This
automatically reduces the number of different solutions and speeds up the decoding process.
The average decoding complexity can be given as

C(RLL-code, x} - Cgyperincreasing knapsack:

The second term is the complexity for decoding a superincreasing knapsack, whereas the first
term is a function of the RLL-code used and the knapsackvector x.

On the other hand demanding as few constraints as possible on the z; and the (r,s) RLL code
is good for the cryptographical strength of the entire knapsack-system. Hence it is probably
a good idea to allow ambiguities for the solution of the knapsack sums and also impose some
constraints on the z; or on the selection of the RLL-code to keep the constant C(RLL-code,x)
small enough (say = 100...10000).

In the appendix a recursive computer program, written in a Pascal-like syntax, is given which
finds all solutions for a knapsack using an arbitrary (r.s) RLL-code. The program can easily be
modified and speeded up for use with a specific RLL-code.

Using the above easy knapsack together with the basic scheme of the previous section we get

a-b-1

S < 3

instead of the constraint eqn. (2), and instead of (3) we have the condition that the sum of any
{1/(r + 1)] weigths y; is smaller than {a — b — 1)/2.

4 The Whole System

In this section we make some small changements to strengthen the system. Namely we do not
publish the ¢;, but the weigths

d; = cpj)- Wmod n, (8)

where P(i) is a random permutation, and W a random integer < n with ged(W,n) = 1. The
permutation and the modular muitiplication are introduced to prevent the use of different 7’
which might transform the ¢; into another easy knapsack. If we use the easy knapsack of the
preceeding section we simpiy set P(j) = j, i.e. we omit the permutation.

To summarize the whole scheme:

Public Key: The weights d;, 7 =0,1,...,/- 1.
Secret Key: W, n, =, P(.), and x.

Encryption: Formd =3 d; - M;.

129

Decryption: Find the permuted weights of the easy knapsack

Re{(d- W' mod n) mod x} .
For actual implementations we propose the following parameters:

L 2200 and [= 7L such that the density is > 0.941
logy n = 500 bits.
logy(a - b — 1) = 250 bits.

This means that the size of the public key is about [- log, n bits = 25 Kbyte. An encrypted
message has about log,(200) + 500 = 508 bits, and the data rate is L/ log,(Ln) =~ 0.39.

Although we do not recommend publishing n, it seems that if n i? selected as product of t.wo
large primes, it can be published without compromising the .securxty of the system (assuming
that the factorization of integers rests difficult). With n published, ¢ can be reduced modulo n
before transmission, which slightly increases the data rate.

5 Security and Generalizations

The system is too new to make thorough statements about its security. However it seems that
the attacks used to break many knapsack systems as described in {2] are not successful if the
easy knapsack is adequately chosen.

The knapsack scheme proposed can be modified and,/or generalized in various ways. For e?(ample
we may use other easy knapsacks, increase the range of the m;, or use algebraic integers instead
of Gaussian integers.

A Gaussian Integers

In this section we give some results needed in the paper. For further dec?ﬂs on Ga'ussia.n integers
consult e.g. [5]. The Gaussian integers are those complex numbers which have mtegerf as real
and imaginary parts. Let [.] denote rounding of integers, then we can define rounding of a
complex number z =z + iy as

[z} =z +iy] = [z] + ily].
Computing modulo a complex number 7 can be defined as

Ty
zmod T =z~

where x* denotes the conjugate complex number of r. The Gaussian primes are the on:dinary
primes of the form = 3 mod 4 as well as the complex numbers a + i where a2 + 52 are primes of
the form = 1 mod 4. Given a prime of the form p = 1 mod 4, we can easily compute the values
of a and b using the following algorithm (see {7}).

130

1. Find z such that 22 = —1 mod p.
(If gnr is a quadratic nonresidue of pthenz = qf.’ﬂ’”” mod p .)

2. Apply the Euclidean algorithm to p and z; the first two remainders less than VP area
and b.

For details see e.g. Wagons paper.

For example to get the representation of n = 1373249 = 1009 - 1361 as sum of two squares we

compute 1009 = 287 + 152, and 1361 = 312+ 202 and find e.g. (28— i15)(31 +120) = 1168 + 495,
Hence n = 11682 + 952,

H r and 5 are integers from the interval [~(a~b-1)/2,(a —b~ 1)/2], then it is not difficult to
show that ;

r+ismodr =r+is,
which explains the constraints (2) and (3). (The number of Gaussian integers which are left

unchanged by the modulo operation equals 777, to keep things simple, we let the size of r and
s be smaller than (a — b - 1)/2.)

B Decoding Algorithm for (r;s) constrained Knapsack

procedurs decode(sum,l11,12:integer;var dec:menge);
var decolist : menge;

i : integer;
begin
if sum=0 then writeln(’Solution=’,dec)
else begin

decolist:=ininterval (sum,11,12);
for i:=max(11,0) to 12 do
if 1 in decolist then
begin
dec:=dec + {i];
decade(sum-x[i],i~s~1,i-r-1,dec);
dac:=dec - [i];
end;
and;
end;

In the above program menge denotes set of 0..1-1. The function ininterval returns a set containing
the indices of the intervals where sum lies in with the additional condition that the indices are
from I1...12. The lines dec := dec+ [i] are the Pascal notation for adding/removing the element

i to/from the set dec. The program is called with decode(sum, 0,1 — 1,dec), with dec initially
set to the empty set [].

Acknowledgment: T would like to thank A.Odlyzko for sending a copy of {3}, which stimulated
section 3, and J.Schwenk for carefully reading the manuscript,

131

References

(1] R.E. Blahut, "Digital Transmission of Information”, Addison-Wesley 1990.

[2] E.F. Brickell, M.Odlyzko, "Cryptanalysis: A Survey of Recent Results™, Proceedings of the
IEEE, Vol. 76, No.5, May 1988, pp.578-593.

[3] M.J.Coster, A.Joux, B.A.LaMacchia, A.M.Odlyzko, C-P.Schnorr, J .Stern, "Improved Low-
Density Subset Sum Algorithms”, Computational Complezity, 2, (1992), pp.111-128.

[4] B.Chor, R.L.Rivest, A Knapsack-Type Public key Cryptosystem based on Arithmetic in
Finite Fields”, IEEE Transactions on Information T heory, Vol.IT-34, No.5, September
1988, pp.901-909. -

[5] G.H.Hardy, E.M.Wright, ”An introduction to the theory of numbers”, fifth edition, Oxford
1979.

[6] R.C.Merkle, M.E.Hellman, "Hiding Information and Signatures in Trapdoor Knapsacks”,
IEEE Transactions on Information Theory, Vol.IT-24, No.5, September 1978, pp.525-530.

[7] S.Wagon, "The Euclidean Algorithm Strikes again”, American Mathematical Monthly,
Vol.87, No.2, 1990, pp.125-129.

132

