
Algorithm which always finds all Roots of an n-th Degree

Polynomial

Dr. Klaus Huber
Huber Consult

Sesenheimer Str. 21
10627 Berlin

Germany
email: filterdesign@klaus-huber.net

Abstract

An algorithm is presented which finds all roots of an n-th degree polynomial. In
contrast to the widely-known algorithms of Newton or Laguerre, which in the general
case of complex zeros are not guaranteed to converge, the algorithm always finds all
solutions.

Index Terms — Root finding, Hurwitz test, Filter design.

1 Introduction

In this contribution an algorithm is presented which finds all roots of an n-th degree
polynomial f(z) =

∑n
j=0 fjz

j , where fj are real numbers. If all roots of f(z) are real, it
is well-known that the algorithm of Laguerre [5] is able to find them with certainty. If
all or some of the roots are complex, Laguerre’s algorithm still is usually the preferred
algorithm, but the convergence to the roots of f(z) is not guaranteed, the convergence
depends on the starting point of the iteration as is the case to a much higher degree for
the method of Newton.

Lehmer [6] has already given an algorithm which always finds all roots. However,
Acton ([1], p.197) criticizes Lehmer’s algorithm that it finds roots about as precisely as
one of the unattractive standard packages but takes three times as long. It is not the aim of
this paper to take part in this discussion, but to present another algorithm – much simpler
than Lehmer’s – which with certainty finds all roots (complex or real) of the polynomial
f(z).

Having an algorithm which always finds the roots of polynomials is a practical necessity.
For example in filterdesign (see e.g. [2] for a recent application) it is important for certain
designs to solve such equations and it is rather annoying if users of a software package
must interact (or worse do not get results) for designs which are realisable.

2 Basics of the Algorithm

The basic part of the new algorithm is a well-known method for determining whether
all roots of a polynomial are in the left complex plane1. This problem has been solved

1Being able to answer this question rapidly without actually finding the roots has an enormous signifi-
cance for engineering applications.

1

by Hurwitz [3]. The resulting test is usually called Hurwitz-test or Hurwitz-criterion. In
its most streamlined form known to filter theorists (and for all others summarized in [4],
p.293) we simply develop the ratio of the even and odd parts of the polynomial f(z) into
a continued fraction and look whether all coefficients are positive. Then f(z) has all its
roots in the left half plane.

Example 1 Consider f(z) = z4 + 5z3 + 10z2 + 10z + 4. To prove that f(z) has all its
roots in the left half plane we compute

z4 + 10z2 + 4

5z3 + 10z
=

1

5
z +

1
5
8z + 1

16
15

z+ 1
15
8 z

and find that all deg{f(z)} = 4 coefficients 1
5 ,

5
8 ,

16
15 ,

15
8 are positive.

If the degree n of f(z) is odd the ratio of the odd and even parts are develeped into a
continued fraction. We say that f(z) is a Hurwitz polynomial if it has all roots in the left
half plane2. Hurwitz’s test is easily programmed.

To determine the real part of a root (real or complex) of f(z) now is very easy. We
simply test whether f(z) is a Hurwitz polynomial or not. Then, we simply shift the
polynomial by a suitable real number a to the right or the left, i.e. we compute f(z+a) or
f(z − a) and again make a Hurwitz test. In this way we can determine in a bisection-like
iteration by interval halving the number σ which approximates the real part of a zero of
f(z) to any precision desired.

A suitable starting number a can easily be obtained from a well-known result of Cauchy
(or refinements thereof). Here, for simplicity, we choose Cauchy’s result. There are better
methods which can e.g. be found in Zeheb[8] and the references therein. Often the problem
one has to solve gives better initial conditions (e.g. in filter design one knows that a lowpass
prototype filter has the roots in a rectangle in the left half plane). Cauchys result tells
us that all roots of f(z) are located within a radius around the origin which is smaller
than rC = 1+maxk=0..n−1 | fkfn |. Hence, given a polynomial f(z) we know without any test
that f(z + rC) is a Hurwitz polynomial and f(z − rC) is not a Hurwitz polynomial. A
pseudo-code implementation (Algorithm 1) is given in the following figure. Indentation is
used instead of begin end commands. For simplicity the error bound ε is assumed to be a
global variable.

Algorithm 1: Bisection Algorithm for Determination of Real Part σ

bisect(f(z))
rC ← cauchyradius(f(z))
(a, b)← (−rC , rC)
while |b− a| > ε :
σ ← (a+ b)/2
g(z)← f(z + σ)
if hurwitz(g(z)): b← σ
else : a← σ

return a+b
2

2Note that a necessary but not sufficient condition for f(z) being a Hurwitz polynomial is that all
coeffients fj 6= 0 and that all fj have the same sign.

2

Clearly, the error bound ε must be selected according to the problem given and also
if necessary (for example if the polynomial is ill-conditioned or two zeroes are very close
together) one has to select multiprecision arithmetic. The selection of ε will be treated
below.

Once we have found the real part σ of a zero of f(z), the imaginary part is found as
follows. We expand f(σ + i y) (where i =

√
−1) which gives a complex polynomial which

can be separated into a real polynomial u(y) plus i times another real polynomial v(y):

f(σ + i y) =
N∑
j=0

fj · (σ + i y)j = u(y) + i · v(y) .

At a zero we have f(σ + iy) = 0, i.e. we are looking for values y where both polynomials
are zero, i.e. u(y) = 0 and v(y) = 0. Hence we can find y by computing the greatest
common divisor (gcd) of u(y) and v(y). Clearly there may be more than one solution.
Only for a real zero is the value y = 0 unique. A conjugate pair of complex zeros delivers
an equation in y2. If there are more than one or two solutions on the line x = σ we may
get a gcd(u, v) polynomial in y of degree greater equal than three. The resulting equation
(if it has degree higher than three or four) in turn then can also be treated with our new
algorithm (or with Laguerre’s method, as all roots are real). The zero (or zeros) found
can then be deflated and the remaining zeros can be tackled in the same way.

To this end we prove that the greatest common divisor of u(y) and v(y) has only real
roots if the roots of f(z) are found and deflated - as is the case in our algorithm - with
the rightmost zeros first.

Theorem 1 When deflating the rightmost zero or zeros of f(z) first, the greatest common
divisor p(y) of u(y) and v(y) has only real roots.

To proof this we assume that p(y) = gcd(u(y), v(y)) has a complex root y = ω + i · ξ. As
u(y) and v(y) are real polynomials (i.e. its coefficients are real numbers) the polynomial
p(y) is also a real polynomial. Hence ȳ = ω − i · ξ is also root of p(y). Thus the complex
number σ + i · y = σ − ξ + i · ω is a root of f(z). Also σ + i · ȳ = σ + ξ + i · ω is root
of f(z). Since f(z) is also a real polynomial the complex conjugate numbers σ − ξ − i · ω
and σ + ξ − i · ω must also be roots of f(z). As we always proceed to find the rightmost
roots this can not happen. If we find σ of f(z) there can be no root of f(z) with real part
σ + |ξ|. Q.E.D.

We now show the functioning of the algorithm with examples which explain the specific
properties of the method.

Example 2 Consider f(z) = z3 + 4z2 + 5z+ 6. The Cauchy radius equals 7, i.e. f(z+ 7)
is a Hurwitz polynomial and f(z− 7) is not a Hurwitz polynomial. All roots lie within the
radius rC = 7 in the complex plane. f(z) is tested and found to be a Hurwitz polynomial,
so the real part of the rightmost zero lies in the interval (−rC , 0). After some further
bisection iterations we find the real part σ = −1

2 . Evaluating f(−1
2 + i y) we obtain

f

(
−1

2
+ i y

)
= −5

2
y2 +

35

8
+ i · (−y3 +

7

4
y) .

Hence u(y) = −5
2(y2 − 7

4) and v(y) = −y · (y2 − 7
4) from which we get gcd(u, v) = y2 − 7

4 .

Thus we find y = ±
√
7
2 and the two conjugate zeros are given by −1

2± i
√
7
2 . After deflation

the third zero −3 follows.

3

Example 3 Consider f(z) = z5 + 6z4 + 21z3 + 44z2 + 56z + 40. The bisection algorithm
leads to the real part σ = −1. Evaluating f(−1 + i y) we obtain

f (−1 + i y) = y4 − 7y2 + 12 + i · (y5 − 7y3 + 12y) .

Hence u(y) = y4 − 7y2 + 12 and v(y) = y5 − 7y3 + 12y from which we get gcd(u, v) =
y4−7y2+12. Thus we find y ∈ {±2,±

√
3} and the four conjugate complex zeros are given

by −1± i 2 and −1± i
√

3. After deflation the fifth zero −2 follows.

The next two examples show that u(y) or v(y) can be identically equal to zero.
This does not pose any problems, in fact it fits well into the computation of gcd(u, v)
as the greatest common divisor of u and v can be computed recursively using
gcd(u, v) = gcd(v, u mod v) which eventually ends with a polynomial gcd(d(y), 0), where
d(y) is the greatest common divisor polynomial. Also note that gcd(w1(y), w2(y)) =
gcd(w2(y), w1(y)).

Example 4 Consider f(z) = z5 + 5z4 + 17z3 + 31z2 + 38z + 20. The bisection algorithm
leads to the real part σ = −1. Evaluating f(−1 + i y) we obtain

f (−1 + i y) = i · (y5 − 7y3 + 12y) .

Hence u(y) = 0 and v(y) = y5−7y3+12y. As gcd(0, v) = v we get gcd(0, v) = y5−7y3+12y
which delivers the same complex roots as the previous example plus an additional real zero
at −1 from y = 0.

Example 5 Consider f(z) = z6 + 6z5 + 22z4 + 48z3 + 69z2 + 58z + 20. The algorithm
leads to the real part σ = −1. Evaluating f(−1 + i y) gives

f (−1 + i y) = −y6 + 7y4 − 12y2 .

Here v(y) = 0 and u(y) = −y6 + 7y4 − 12y2. Hence gcd(u, 0) = −y6 + 7y4 − 12y2. The
factor y2 indicates that we have a double real root at σ = −1. The remaining equation
−y4 + 7y2 − 12 leads to the same complex zeros as in the preceding two examples.

Example 6 Let f(z) = z5 + z4 + 4z + 4. The bisection algorithm delivers the real part
σ = 1 of the rightmost zero. Then

f(1 + i y) = 6y4 − 16y2 + 10 + i(y5 − 14y3 + 13y),

hence u(y) = 6y4−16y2 +10 and v(y) = y5−14y3 +13y which leads to gcd(u, v) = y2−1.
This delivers the two complex conjugate zeros 1 ± i. Deflation of these zeros gives the
polynomial z3 + 3z2 + 4z + 2. The bisection algorithm then gives the real part −1 and
(z3 + 3z2 + 4z + 2)|z=1+iy yields 0 + i (−y3 + y) which leads to the zeros −1, −1± i.

3 Finite Precision Arithmetic

To complete the presentation we have to say a few words about the finite precision arith-
metic which is used in actual numerical computations. We therefore give a pseudo-code
for recursively computing the greatest common divisor of two polynomials using finite
precision. Polynomials are assumed to be represented as arrays. The identity polynomial
1 is returned as [1].

4

Algorithm 2: GCD Computation with Finite Precision

gcd(a(z), b(z))
if almostzero(a(z)): return b(z)
if almostzero(b(z)): return a(z)
if deg(a(z)) == 0 or deg(b(z))==0: return [1]
return gcd(b(z), a(z) mod b(z))

The function almostzero(p(z)) checks that all coefficients of the input polynomial p(z)
have absolute values less than a value ε2. The error bound ε2 (as the value of ε above)
takes into account the kind of problem one has to solve. Usually ε2 is set somewhat greater
than ε. In a typical application in filter design for finding the poles of a transfer function
(with simple complex roots and possibly one real root) it is sufficient to find the poles
with 5 digits. So we can set ε ≈ 10−7 and ε2 ≈ 0.5 · 10−5 with double precision arithmetic.
Of course for other problems the situation may be completely different. The value ε must
not be set too small, in particular if no multiprecision arithmetic is used, as the Hurwitz
test for too small values of ε can rapidly come to its numerical limit3. The selection of ε
is discussed in the second to last section below.

For a real zero of f(z) it is not necessary to perform the greatest common divisor
computation gcd(u, v) since for such roots we have y as factor of u(y). The polynomial
v(y) is an odd polynomial and is also divisible by y. For a real zero with multiplicity d we
can easily check wether the first d coefficients of both u(y) and v(y) are smaller than ε2.
We show this finite precision by reconsidering example 5:

Example 7 Let ε = 10−7 and ε2 = 0.5 · 10−5 with f(z) = z6 + 6z5 + 22z4 + 48z3 + 69z2 +
58z + 20. The bisection algorithm for determining σ gives σ = −0.9999999729916453.
Evaluating f(σ + i y) with this value gives

f (σ + i y) = u(y) + i v(y) ,

where

u(y) = −y6 + 7.000000000000011 · y4 − 12.000000000000025 · y2 + 7.105427 · 10−15

and
v(y) = 1.620501 · 10−07 · y5 − 7.562339 · 10−07 · y3 + 6.482005 · 10−7 · y

Without entering the gcd computation, we get the double real root σ as the coefficients
at y0 and y1 of both polynomials u(y) and v(y) are much smaller than 0.5 · 10−5. The
distortion of the coefficients of (u(y)− 7.105427 · 10−15)/y2 is negligible and thus we find
the correct imaginary parts of the remaining 4 complex zeros by solving a quadratic in y2.

Before we present the final algorithm for computing all roots of a polynomial, we
present an algorithm which finds all roots of p(y) = gcd(u(y), v(y)), i.e. an algorithm which
finds all roots if we know that the input polynomial has only real roots. The algorithm
is straightforward. The roots are collected in the array zeros which is initially set to
the empty array []. The zeros found are appended with the command zeros.append(σ).

3As a rule of thumb we recommend to set ε in the order of rC · 10−L
2 if L digits arithmetic is used. If

a higher precision is desired and increasing L no option one may still use the method and add some root
polishing using Newton’s or Bairstow’s method.

5

The polynomials u(y) and v(y) are also stored in arrays. The lowest coefficients of both
polynomials must be zero at least once for a single root and are accordingly deleted with
the commands del u[0] and del v[0]. The last line recursively calls the deflated input
polynomial, where t denotes array concatenation.

Algorithm 3: Finding all roots of a polynomial which has real roots only

realroots(f(z))
n← deg((f(z))
zeros=[]
if n < 1: return zeros
if n == 1: return [-f[0]/f[1]]
σ =bisect(f(z))
g(z)← f(z + σ)
(u(y), v(y))← (<{g(iy)},={g(iy)})
while abs(u[0]) < ε2 and abs(v[0]) < ε2:

zeros.append(σ)
f(z)← f(z)/(z − σ)
del u[0]
del v[0]

return zeros t realroots(f(z))

We are ready to give a complete algorithm for finding all roots of a polynomial f(z).
In addition to the previous algorithm the imaginary parts are processed. The conjugate
roots found are deflated by dividing through the quadratic equation which contains both
conjugate roots (i.e. we are using real arithmetics only). The last loop checks whether the
solution(s) y are greater than ε2. Thus ε2 controls the precision of the imaginary parts
and ε the precision of the real parts.

6

Algorithm 4

roots(f(z))
n← deg((f(z))
zeros=[]
if n < 1: return zeros
if n == 1: return [-f[0]/f[1]]
σ =bisect(f(z))
g(z)← f(z + σ)
(u(y), v(y))← (<{g(iy)},={g(iy)})
d← 0
while abs(u[0]) < ε2 and abs(v[0]) < ε2:

zeros.append(σ)
f(z)← f(z)/(z − σ)
del u[0]
del v[0]
d← d+ 1

p(y)←gcd(u(y), v(y))
if deg(p(y)) ≥ 1:
Y ← realroots(p(y))
for y ∈ Y :

zeros.append(σ + i · y)
if y > ε2:
f(z)← f(z)/(z2 − 2σz + σ2 + y2)
d← d+ 2

if d < n: return zeros t roots(f(z))
return zeros

We now prove that our algorithms find all roots with certainty.

Theorem 2 If the number of digits used and the values ε and ε2 are selected adequately,
then the above algorithms always find all roots of the n-th degree polynomial f(z).

Proof: Any n-th degree polynomial f(z) has exactly n roots within the Cauchy radius
rC . If the number of digits is properly chosen, Hurwitz’s test always tests correctly whether
all roots of the polynomial f(z+σ) are in the left half of the complex plane or not. Hence
the bisection algorithm 1 always finds the real part σ of the right-most zero of f(z) to any
precision required since for a given value ε the size of the interval in which σ lies is halved
with each iteration. From f(σ + z) we obtain the two polynomials u(v) and v(y). If the
coefficients are known with sufficient precision, we can find the greatest common divisor
of u(y) and v(y) from which the imaginary part(s) of the zero(s) can be found. Q.E.D.

In practice one has to be very careful about ill-conditioned polynomials. This is a
very essential problem for any root finding algorithm. Wilkinson [7] has some interesting
examples where very small errors in the coefficients can change some real roots of a polyno-
mial to complex roots. Nevertheless, this is no principal hurdle for the above algorithms.
By setting the values ε and ε2 appropriately and/or using multiprecision arithmetic these
problems of ill-conditioned polynomials disappear.

If one does not have much information about the polynomials whose roots are to be
found, the parameter ε poses a problem if a fixed number L of digits is used and can not

7

– for whatever reason – be increased. Namely the Hurwitz test can fail, if ε is chosen
too small and Algorithm 1 may run into an infinite loop. Therefore it is best to limit
the number of iterations nitmax as in the following Algorithm 1a. This algorithm for a
fixed number of digits in the worst case does not reach the error bound ε but at least
finds a good approximation for σ. Then it is also straight-forward to adapt the value ε2
to get quite good initial values for the roots which eventually can be found using classical
root-polishing algorithms. A square root bound for the selection of ε is given in the next
section.

Algorithm 1a: ε-tolerant Bisection Algorithm for Determination of Real Part σ

bisect(f(z))
rC ← cauchyradius(f(z))
(a, b)← (−rC , rC)
for k ← 1 to nitmax:
σ ← (a+ b)/2
if |b− a| < ε: return σ
g(z)← f(z + σ)
if hurwitz(g(z)): b← σ
else : a← σ

return a+b
2

4 A square root bound for ε

We give a recommendation as to the selection of ε under the assumption that we use
L-digit precision4. We recommend setting

ε ≈ rC · 10−
L
2 .

To justify this selection we assume that f(z) contains two real roots which are very close
together say at c+ε0 and c−ε0. Then f(z) has the quadratic (x−(c+ε0)) ·(x−(c+ε0)) =
x2 − 2c x+ c2 − ε20 as factor. If ε0 < c · 10−L/2 and c has L digits mantissa, then we have
for the term c2 − ε20 < c2(1 − 10−L), which means that ε20 does not appear in the L-digit
representation of the number c2 − ε20. It also does not appear in the number c2 + ε20. This
means that it is impossible to distinguish for example the values c ± ε0, or c ± i ε0 or a
double root at c. Hence the precision is bounded from below by the square root bound
c · 10−L/2. The recommendation above then follows by replacing c by the Cauchy radius
rC . The value of ε2 is not particularly critical, it should be set somewhat greater than ε
(say ε ≈ 10l · ε with l a small integer).

This recommendation will do for almost all polynomials. If one expects particular nasty
ill-conditioned polynomials (for example clusters of roots which are very close together)
one may further increase the value of ε (say to ε ≈ rC · 10−L/3). Alternatively, of course,
one may increase the value of L.

4The common double precision data format uses 53 bits for the mantissa which correspond to roughly
16 digits (L = log10 253 ≈ 15, 95).

8

5 Conclusion

An algorithm for the solution of polynomial equations has been presented which finds real
and complex roots with certainty. It uses a bisection algorithm to find the real part of the
rightmost root. The imaginary part is found using gcd-computations.

Another advantage of the algorithm is that all roots of a polynomial f(z) including the
complex roots can be found by using essentially only real arithmetics. Even determining
f(σ+ i y) does not need complex arithmetic as we can compute g(z) = f(σ+ z) and later
we can separate the polynomials u(y) and v(y) by essentially reading off the corresponding
coefficients from the polynomial g(i y) which can be done without complex arithmetic.

If L-digit arithmetic is used the algorithm typically delivers L/2 correct digits. If
higher precision is needed one has to increase L i.e. use multiprecision arithmetic which
nowadays is readily available with public domain software.

References

[1] F.S.Acton, ”Numerical Methods that work”, The Mathematical Association of Amer-
ica, Washington D.C., revised edition 1990.

[2] K.Huber, ”All-Pole Filters Matched to Specifications”, Journal of the Audio Engi-
neering Society, Vol. 61, No. 12, pp. 1022-1025, December 2013.

[3] A.Hurwitz, ”Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit
negativen reellen Theilen besitzt.” Mathematische Annalen, Band 46, 1895, pp. 273-
284.

[4] W.B.Jones, W.J.Thron, ”Continued Fractions”, Cambridge University Press, 1980.

[5] E.Laguerre, ”Sur une methode pour obtenir par approximation les racines d’une equa-
tion algebrique qui a toutes ses racines reelles”, Novelles Annales de Mathematiques,
2-eme serie, t. XIX, 1980, dans Oeuvres de Laguerre, Tome 1, second edition Paris,
1898, reprint Chelsea Publishing Company Bronx, New York,1972, pp. 87-103.

[6] D.H.Lehmer, ”A Machine Method for Solving Polynomial Equations”, JACM, Vol.
8, 1961, pp. 151-162.

[7] J.H.Wilkinson, ”Rounding Errors in Algebraic Processes”, HMS Office London, 1963.

[8] E.Zeheb, ”On the Largest Module of Polynomial Zeros”, IEEE Transactions on Cir-
cuits and Systems, Vol.38, No. 3, March 1991, pp. 333-337.

9

