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The error locator polynomial of two-error correcting binary Goppa codes
is given.

Introduction: Two-error correcting binary Goppa codes are very useful
for practical applications. Some of them (e.g. the byte oriented [16,8,5]
code) have parameters which are better than any linear cyclic codes.
Unfortunately they are rarely used. One reason seems to be that Goppa
codes demand some algebraic knowledge which many designers do not
have. It is therefore of interest to directly give the error locator polynomial
for Goppa codes to facilitate the decoding of such codes. Having an
explicit expression for the error locator polynomial should also be of
interest for theoretical reasons. The error locator polynomial follows
immediately from variants of the Patterson algorithm for decoding Goppa
codes. Although this is a rather simple task it has not been done to the best
knowledge of the author. For the basics of Goppa codes see [2], [5], [6].

Goppa Codes: As usual for linear codes, the parameter triple [n, k, d]

designates length n, information rate k, and minimum distance d of the
Goppa codes. Goppa Codes over the field GF (q) are defined by its
codewords c= (c0, c1, c2, . . . , cn−1) for which the following equation
holds:

n−1∑
i=0

ci

z − αi
≡ 0 mod G(z) .

In the above equation G(z) is a polynomial of degree s over the field
GF (qm) called Goppa Polynomial and αi are n elements of the field
GF (qm) which are not zeros of the Goppa Polynomial, i.e. G(αi) 6= 0.
If the codeword is transmitted over a channel it may be corrupted by an
error vector e= (e0, e1, e2, . . . , en−1) and the receiver gets the vector
r= (r0, r1, r2, . . . , rn−1). For this vector the receiver can compute the
syndrome

S(z) =

n−1∑
i=0

ri

z − αi
=

n−1∑
i=0

ci

z − αi
= 0 mod G(z)

The error locator polynomial σ(z) contains the roots which identify
the error locations, i.e. if at positions j ∈ F ⊂ {0, 1, . . . n− 1} errors
ej occured the polynomial reads σ(z) =

∏
j∈F (z − αj). The decoding

problem is now reduced to solving the so called key equation

ω(z) = σ(z) · S(z) mod G(z)

for Goppa codes. Finding the polynomials σ, ω of lowest degree which
solve the key equation makes it possible to find the positions (from the
roots of σ) and the error values (using ω). Here we only consider binary
codes (q= 2) and the error values are equal to one. In the binary case we
get

σ′(z) = σ(z) · S(z) mod G(z)

where the dash denotes the derivative. Letting the inverse polynomial of
S(z) modulo G(z) be denoted by T (z) and setting σ(z) = a2(z) + zb2(z)

i.e. σ′ = b2(z) we arrive at the new key equation for binary Goppa codes

a(z) = b(z) ·R(z) mod G(z)

where R(z) is the square root of T (z) mod G(z). This equation is valid
for T (z) 6= z, for T (z) = z one gets σ(z) = z. Further details are given in
[6].

The procedure for solving the above equation for a, b which leads to σ
is called the Patterson algorithm. The new key equation can be solved e.g.
by the Berlekamp-Massey or the Euclidean algorithm (see [9], [6]). For
the degrees of a, b we have deg{a(z)} ≤ s/2 and deg{b(z)} ≤ (s− 1)/2.
Finding the square root of T (z) modulo G(z) can be done by matrix-
methods or better by the algorithm given in ([3], [4]). Computationally the
Patterson algorithm is faster than solving the key equation using a Goppa
polynomial having twice the degree than the Goppa polynomial G(z)
used here (see [1], p.237). This is particularly important for applications
of Goppa codes for the McEliece cryptosystem [7]. Using the Patterson

algorithm we can start with the initial degree of the polynomials having
half the degree of the conventional approach.

Error Locator Polynomial for Two-Error Case: To explicitly determine
the error locator polynomial, we now consider the above decoding
algorithm for the two error case. To achieve the maximal length of Goppa
codes we demand that the degree two Goppa polynomial G(z) has no
roots in GF (2m). To keep the polynomial as simple as possible one sets
G(z) = z2 + z + γ. For γ an element is used which has trace equal to one,
i.e.

tr(γ) = γ2
0
+ γ2

1
+ γ2

2
+ . . . γ2

m−1 !
= 1 .

Then G(z) has no roots in GF (2m). As half of the elements of GF (2m)

have trace equal to one and half have trace equal to zero it is easy to rapidly
find an element γ of trace one. For odd m we may take γ = 1.

From S(z) · T (z)≡ 1 mod G(z) we obtain T (z) = T0 + T1z with

T1 =
S1

S2
0 + S2

1γ + S0S1

T0 =
S0 + S1

S2
0 + S2

1γ + S0S1

and finishing the Patterson algorithm leads — up to a multiplicative
constant — to the error locator polynomial

T0 + γ(T1 + 1) + z + (T1 + 1)z2 .

This formula holds if two error happened. Luckily, it also gives the error
locator polynomial for the one error case. This can be shown as follows.
For a single error at position j the syndrome leads to

n−1∑
i=0

1

z − αj
modG(z)=

G(z) +G(αj)

G(αj)(z − αj)
=

1 + αj

α2
j+αj + γ

+
z

α2
j + αj + γ

Plugging S0 =
1+αj

α2
j+αj+γ

and S1 = 1
α2
j+αj+γ

into the equation for T1 we

get T1 = 1 and the error locator polynomial reduces to T0 + z = z − αj
i.e. the error locator polynomial for the one error case.

Hence the decoding for errors of weight up to two is straight-forward:
Compute the syndrome S(z): If S(z) = 0 the received vector is a
codeword. If S(z) is non-zero compute T1. The one-error case occurs for
T1 = 1 and the degree one polynomial σ(z) = z − αj immediately gives
the value αj from which the error position j follows. For T1 6= 1 the error
locator polynomial has degree two and if it has two roots in GF (2m) (see
below for the condition) these roots deliver the positions at which the two
errors occured.

For the solution of a quadratic equation over GF (2m), one best uses a
well-known (but perhaps not widely known) formula which can be traced
back to Hilbert (see [8], pp.104-108). First using z = x

T1+1
the locator

polynomial above is transformed to

x2 + x+ κ where κ= (T0 + 1)(T0 + γ(T1 + 1)) .

If x1 is a root then x1 + 1 is the second. Using any element u of GF (2m)

having trace equal to one (e.g. u= γ) it is easy to verify that x1 given by

x1 = κ · u2 + (κ+ κ2) · u2
2
+ . . .+ (κ+ κ2 + . . . κ2

m−2
) · u2

m−1

is root of x2 + x+ κ. For odd m, setting u= 1, the formula for x1
simplifies to x1 = κ2 + κ2

3
+ . . .+ κ2

m−2
. Thus the roots of the error

locator polynomial are given by z1 = x1/(T1 + 1) and z2 = x2/(T1 + 1).
The condition that the quadratic x2 + x+ κ has two zeros in GF (2m) is
tr(κ) = 0.

Conclusion: The error location polynomial for two error correcting Goppa
codes has been determined explicitly. This result simplifies decoding such
codes and may be useful for theoretical investigations.
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